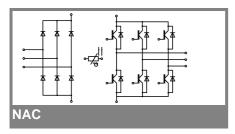


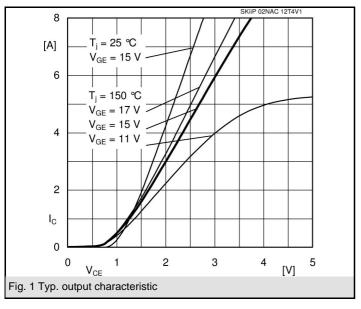
MiniSKiiP®0

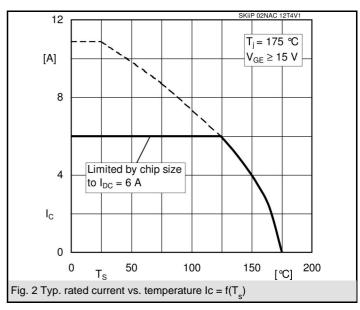
3-phase bridge rectifier + 3-phase bridge inverter

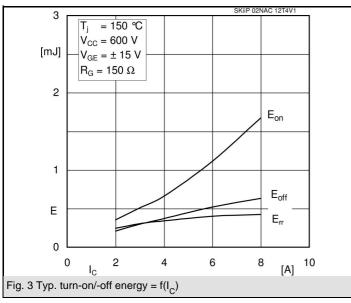

SKiiP 02NAC12T4V1

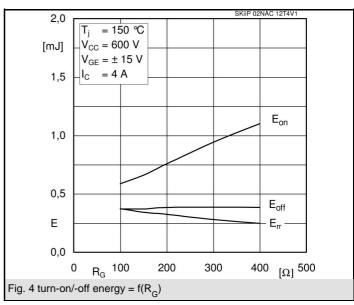
Features

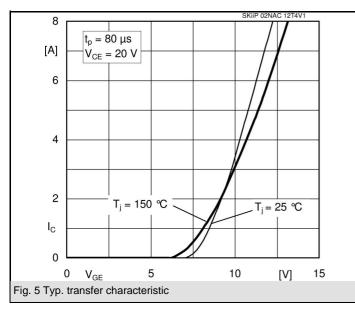
- Trench 4 IGBTs
- · Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E 63532

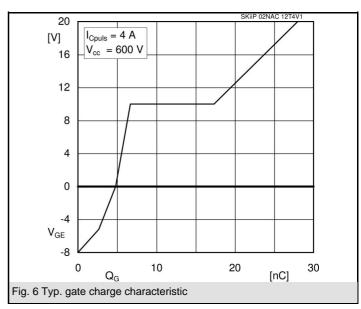

Remarks

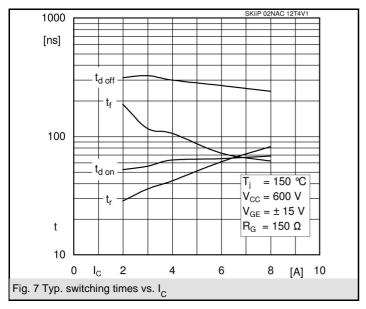

- V_{CEsat}, V_F= chip level value
 Case temp. limited to T_C = 125°C max. (for baseplateless modules $T_C = T_S$
- product rel. results valid for $T_i \le 150$ (recomm. $T_{op} = -40$...
- Temp.Sensor: No basic insulaton to main circuit, max. potential difference 850V to -DC

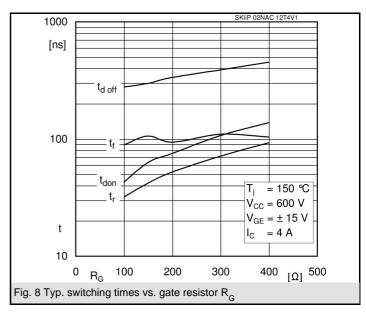


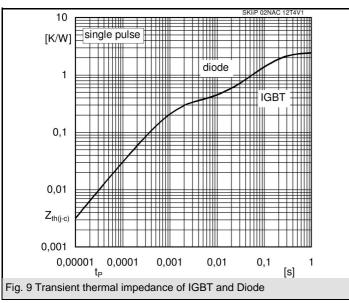

Absolute Maximum Ratings $T_S = 25 ^{\circ}\text{C}$, unless otherwise specified							
Symbol	Conditions	Values	Units				
IGBT - Inverter							
V_{CES}		1200	V				
I _C	T _s = 25 (70) °C	6 (6)	Α				
I _{CRM}		12	Α				
V_{GES}		± 20	V				
T _j		-40+175	°C				
Diode - Inverter							
I _F	T _s = 25 (70) °C	7,5 (7,5)	Α				
I _{FRM}		24	Α				
T _j		-40+175	°C				
Diode - Rectifier							
V_{RRM}		1600	V				
I _F	T _s = 70 °C	35	Α				
I _{FSM}	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_i = 25 ^\circ\text{C}$	220	Α				
i²t	$t_{\rm p}$ = 10 ms, sin 180 °, $T_{\rm i}$ = 25 °C	240	A²s				
T _j	,	-40+150	°C				
Module							
I _{tRMS}	per power terminal (20 A / spring)	20	Α				
T _{stg}		-40+125	°C				
V _{isol}	AC, 1 min.	2500	V				

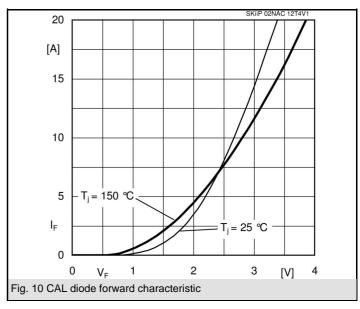

Characte	ristics	T _S = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V_{CEsat}	$I_{Cnom} = 4 \text{ A}, T_j = 25 (150) ^{\circ}\text{C}$		1,85 (2,25)	2,05 (2,45)	V			
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_{C} = 1 \text{ mA}$	5	5,8	6,5	V			
V _{CE(TO)}	$T_j = 25 (150) ^{\circ}C$		0,8 (0,7)	,	V			
r _T	$T_j = 25 (150) ^{\circ}C$		260 (390)	290 (410)	mΩ			
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,25		nF			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,025		nF			
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,015		nF			
$R_{th(j-s)}$	per IGBT		2,49		K/W			
t _{d(on)}	under following conditions		65		ns			
t _r	$V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V}$		45		ns			
t _{d(off)}	$I_{Cnom} = 4 \text{ A}, T_j = 150^{\circ}\text{C}$		300		ns			
t _f	$R_{Gon} = R_{Goff} = 150 \Omega$		110		ns			
Ė _{on}	inductive load		0,66		mJ			
E _{off}			0,37		mJ			
Diode - Inverter								
$V_F = V_{EC}$	I _{Fnom} = 4 A, T _i = 25 (150) °C		2,05 (1,85)	2,35 (2,15)	V			
$V_{(TO)}$	T _i = 25 (150) °C			1,45 (1,05)	V			
r _T	$T_j = 25 (150) ^{\circ}C$		200 (250)	225 (275)	mΩ			
$R_{th(j-s)}$	per diode		2,53		K/W			
I _{RRM}	under following conditions		3,4		Α			
Q_{rr}	$I_{Fnom} = 4 \text{ A}, V_{R} = 600 \text{ V}$		0,95		μC			
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 150 ^{\circ}\text{C}$		0,34		mJ			
	$di_F/dt = 110 A/\mu s$							
Diode - Rectifier								
V_{F}	I _{Fnom} = 15 A, T _i = 25 °C		1,1		V			
V _(TO)	T _i = 150 °C		0,8		V			
r _T	T _i = 150 °C		20		mΩ			
R _{th(j-s)}	per diode		1,5		K/W			
	ure Sensor							
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanical Data								
w			20		g			
M_s	Mounting torque	2		2,5	Nm			

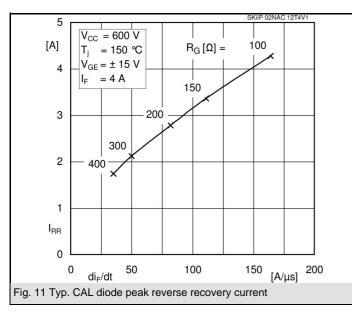


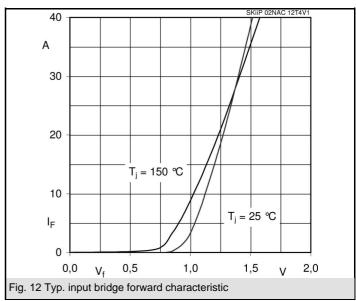


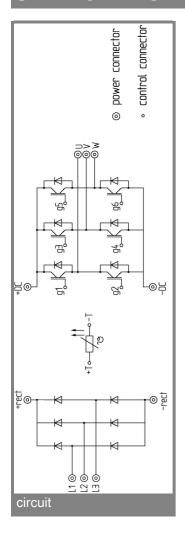


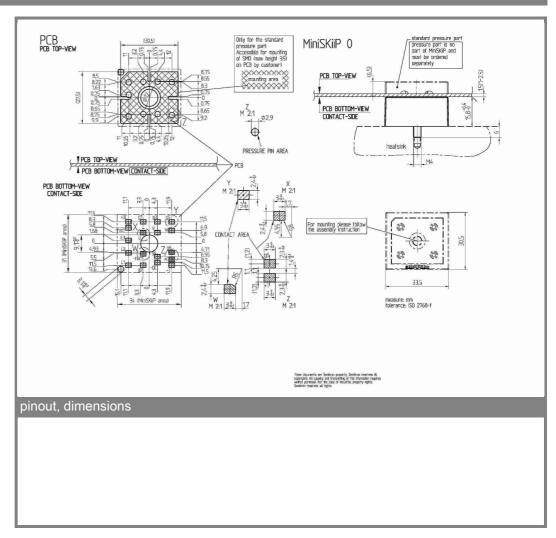












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.